1. Find a Möbius transformation S from $\mathbb{R} \cup\{\infty\}$ to $\{z:|z|=1\}$ which is surjective. Find the image under this transformation of $\{z: \operatorname{Im}(z)>0\}$.
Answer: Consider a Möbius transformation F from $\{z \in \mathbb{C}:|z|=1\}$ to $\mathbb{R} \cup\{\infty\}$ by

$$
F(z)=\frac{a z+b}{c z+d}
$$

where $a d-b c \neq 0$. By this transformation the points $i \rightarrow \infty,-i \rightarrow 0$ and $1 \rightarrow 1$. Now

$$
\begin{aligned}
F(i)=\infty & \Longrightarrow c i=-d \\
F(-i)=0 & \Longrightarrow a i=b \\
F(1)=1 & \Longrightarrow a+b=c+d
\end{aligned}
$$

Therefore $F(z)=-i \frac{z+i}{z-i}$. Hence the inverse transformation S from $\mathbb{R} \cup\{\infty\}$ to $\{z:|z|=1\}$ is

$$
S(w)=\frac{w-i}{w+i} .
$$

First observe that $S(-1)=i, S(0)=-1$ and $S(1)=-i$, i.e., the real-axis goes to a circle by this transformation. Now putting $w=x+i y$ we have

$$
\begin{aligned}
S(w) & =\frac{w-i}{w+i} \\
& =\frac{x^{2}+y^{2}-1}{x^{2}+(y+1)^{2}}+i \frac{-2 x}{x^{2}+(y+1)^{2}} .
\end{aligned}
$$

Therefore $|S(x)|=1$ and $(0,1)$ goes to $(0,0)$. Hence the image of $\{x+i y: y>0\}$ under this transformation is the unit disk i.e., $\left\{x+i y: x^{2}+y^{2}<1\right\}$.
2. Find the harmonic conjugate of $u(x, y)=\operatorname{sinx} x$ coshy vanishing at $(1,0)$.

Answer: We see that $u_{x x}+u_{y y}=-\operatorname{sinxcosh} y+\sin x \cosh y=0$. Therefore $u(x, y)$ is a harmonic function. Let $v(x, y)$ be the conjugate harmonic of $u(x, y)$ such that $u+i v$ is analytic. Then by Cauchy-Riemann equations, we have $u_{x}=v_{y}$ and $u_{y}=-v_{x}$. Now

$$
\begin{aligned}
v(x, y) & =\int \frac{\partial u}{\partial x} d y+g(x) \\
& =\cos x \sinh y+g(x) .
\end{aligned}
$$

Differentiating with respect to x, we get $\frac{\partial v}{\partial x}=-\operatorname{sinxsinh} y+g^{\prime}(x)=-\frac{\partial u}{\partial y}=-\sin x \sinh y$. Therefore g is constant. But $v(1,0)=0$ gives $g(x)=0$ for all x. Hence $v(x, y)=\operatorname{cosxsinhy}$. This is the required result.
3. Give an example of a region and a function f in $H(\Omega)$ such that there is no power series convergent at all points of whose sum is $f(z)$.
Answer: Consider $f(z)=\frac{1}{z-1}$ for $z \in \mathbb{C} \backslash\{1\}$. Clearly this is an analytic function on this region. But there are two power series representations namely for $|z|<1, f(z)=\sum_{n=0}^{\infty} z^{n}$ and for $|z|>1, f(z)=-\sum_{n=0}^{\infty} \frac{1}{z^{n-1}}$.
4. If Ω is a region and f^{2} and \bar{f} are analytic in Ω show that f is necessarily a constant on Ω.

Answer: Let $f=u+i v$, where $u=u(x, y)$ and $v=v(x, y)$ be real-valued functions. Then $\bar{f}=u-i v$ which is analytic by hypothesis. Now $f^{2}=u^{2}-v^{2}+i 2 u v$ and $\bar{f}^{2}=u^{2}-v^{2}-i 2 u v$ both are analytic.

Therefore $f^{2}+\bar{f}^{2}=2\left(u^{2}-v^{2}\right)$ which is a real-valued analytic function and hence constant. Similarly $u v$ is also a constant function. Thus f^{2} and \bar{f}^{2} are constant functions. Now using the fact that \bar{f} is analytic, f has to be a constant function.
5. If $\gamma:[0,1] \rightarrow C$ is continuously differentiable show that $\int_{\gamma} \frac{1}{\eta-z} d \eta \rightarrow 0$ as $z \rightarrow \infty$.

Answer: We have $\int_{\gamma} \frac{1}{\eta-z} d \eta=\int_{0}^{1} \frac{1}{\gamma(t)-z} d t$.
Now $\left|\int_{0}^{1} \frac{1}{\gamma(t)-z} d t\right| \leq \sup \left|\frac{1}{\gamma(t)-z}\right| \int_{0}^{1}\left|\gamma^{\prime}(t)\right| d t$. Since $\gamma([0,1])$ is bounded, $\sup \left|\frac{1}{\gamma(t)-z}\right| \rightarrow 0$ as $z \rightarrow \infty$.
Hence $\int_{\gamma} \frac{1}{\eta-z} d \eta \rightarrow 0$ as $z \rightarrow \infty$.
6. Find the nature of singularity of the following functions at 0 :

$$
\begin{aligned}
& \text { a) } \frac{\log (1+z)}{z^{2}} \\
& \text { b) } \frac{1}{1-e^{z}} \\
& \text { c) } z^{2} \sin \left(\frac{1}{z}\right)
\end{aligned}
$$

Answer: (a) : We see that for $|z|<1, \frac{\log (1+z)}{z^{2}}=\frac{1}{z}-\frac{1}{2}+\frac{1}{3} z^{2}-\ldots$.
Hence $z=0$ is a simple pole.
(b) $1-e^{z}=-z\left[1+\frac{z}{2!}+\frac{z^{2}}{3!}+\ldots\right]=-z[1+f(z)]$, where $f(z)=\frac{z}{2!}+\frac{z^{2}}{3!}+\ldots$. Clearly, $z=0$ is a simple pole of $\frac{1}{1-e^{z}}$.
(c) The Laurent expansion at $z=0$ of
$z^{2} \sin \left(\frac{1}{z}\right)=z-\frac{1}{3!z}+\frac{1}{5!z^{3}}-\ldots$. Therefore $z=0$ is an essential singularity.
7. If f is a given entire function, find all entire functions g such that $|g(z)| \leq|f(z)|^{2}$ for all $z \in \mathbb{C}$.

Answer: Since $|g(z)| \leq|f(z)|^{2}=\left|f^{2}(z)\right|$ for all z, the zeros of f^{2} should be zeros of g. Consider $h(z)=\frac{g(z)}{f^{2}(z)}, z \in \mathbb{C}$. Clearly h is an entire function as g and f^{2} are so. Also $|h(z)| \leq 1$. Now by Liouville's theorem h is constant. Therefore $g=c f^{2}$, where c is a constant with $|c| \leq 1$.

